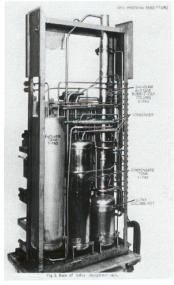
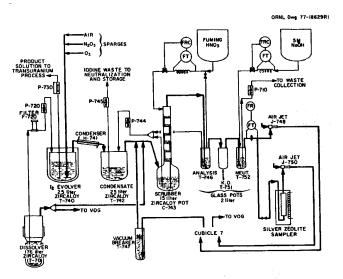
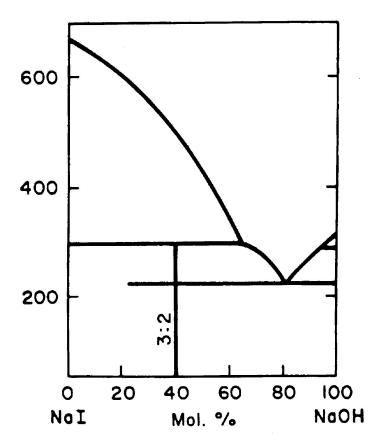

Advanced Accelerator Applications Separations Projects at ORNL

Emory D. Collins Oak Ridge National Laboratory


July 9, 2002


AAA Separations Projects at ORNL

- 1. Removal of ¹²⁹I and conversion to sodium iodide target for transmutation
- 2. GCR Spent Fuel (TRISO-coated) disassembly and dissolution
- 3. Conversion of uranium nitrate to oxide for disposition
- 4. Conversion of UREX raffinate from nitrate to oxide
- 5. Evaluation of new European solvent extraction processes for actinide separation


Previous ORNL Experience with Isolation of Radioiodine

- lodine removal and capture were studied in high activity tests conducted in 1979
- A special equipment rack was designed and installed in REDC Building 7920, Cell 7. This equipment is still used in current work
- The process shown in the diagram was used. Iodine sorption reagents tested have included (1) fuming nitric acid, (2) mercuric nitrate, and (3) sodium hydroxide
- Results were reported in ORNL/TM-6182 "lodox Process Tests in a Transuranium Element Campaign", E. D. Collins and D. E. Benker (June 1979)

Proposed Process to Isolate NaI

Guiseppe Scarpa, Atti reale accad. Lincei, Sez. I, 24, 961 (1951)

- Purpose: to develop a method of scrubbing iodine-containing gases (e.g. I₂, HI, or CH₃I) from fuel processing off-gas streams via reaction and dissolution in molten salts
- The phase diagram of the NaOH/Nal system indicates that at sufficiently high iodine concentration, Nal precipitates as a relatively pure solid phase as the melt is cooled
- Tasks to be performed
 - Experimentally demonstrate the efficacy of iodine trapping by molten NaOH
 - Demonstrate the NaI precipitation
 - Thermodynamic analysis of baseline gas processing scenarios
- Advantages of iodine trapping in molten salts
 - Potentially a simple "one-step" process that enables trapping and Nal product generation in a single trap
 - · No aqueous liquid waste
 - Associated conversion on NO_x gases to nitrogen and water vapor by the addition of hydrogen to gas stream
 - Possible direct conversion of CO₂ to simple carbonates
 - Nal product is reference state material and formed directly in the process
 - Isolation of Nal product by simply cleaving solid Nal from solidified salt mass, crystal "pulling" or by sublimination of Nal (to be determined)

The NaOH melt system provides a means of trapping HI or l_2 with the formation of NaI as a primary phase component (H_2 would be added to l_2 -containing streams.

Iodine Trapping in Molten Salts Progress

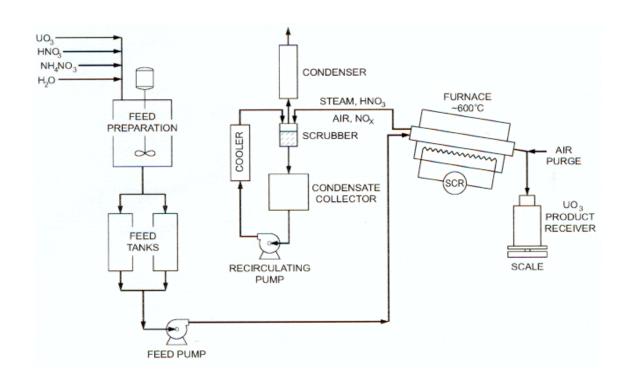
Previous

- Demonstrated phase segregation and separation of KI from KOH in analogous, but simpler, salt system.
- Demonstrated phase separation and separation of Nal from NaOH but hampered by subsolidus 3:2 Nal/NaOH compound formation. (See phase diagram).
- Established analytical means for measuring iodide concentration along with the direct aqueous titration of remaining hydroxide content.

Recent

- Trapping of I₂ vapors in NaOH melt as a function of temperature.
- Examined trapping of I₂ vapors by mixing with 4% H₂/Argon to effect reduction to HI during trapping in NaOH melt.
- Up to 90% of lodine vapors trapped when melt was at ~600°C.
- Only ~30% I₂ trapped when melt was ~400°C.
- H₂/I₂ reaction apparently requires higher temperatures to first produce HI.

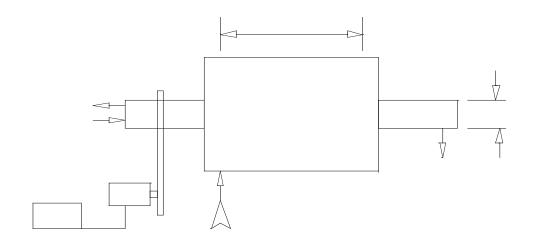
Future


- Test trapping of HI and CH₃I in molten NaOH
 - Investigate effects of NO_x and CO₂ contaminant gases
- Improve Nal separation process by:
 - Finer cooling/quenching control
 - Nal crystal pulling from melt
 - Nal sublimation

g of HI and FY 2002

FY 2002

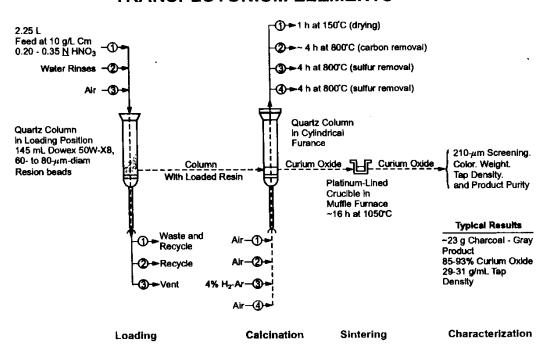
FY 2003


Modified Direct Dentrification for UREX Uranium Product

Developed at ORNL for UO₃-PuO₂ production for Fast Breeder Program. Process has been scaled-up to UO₃ (UO₂) production for AVLIS Program. Units with capacity of 1 kg/hour have been tested. Larger equipment (10 kg/h) unit design and built.

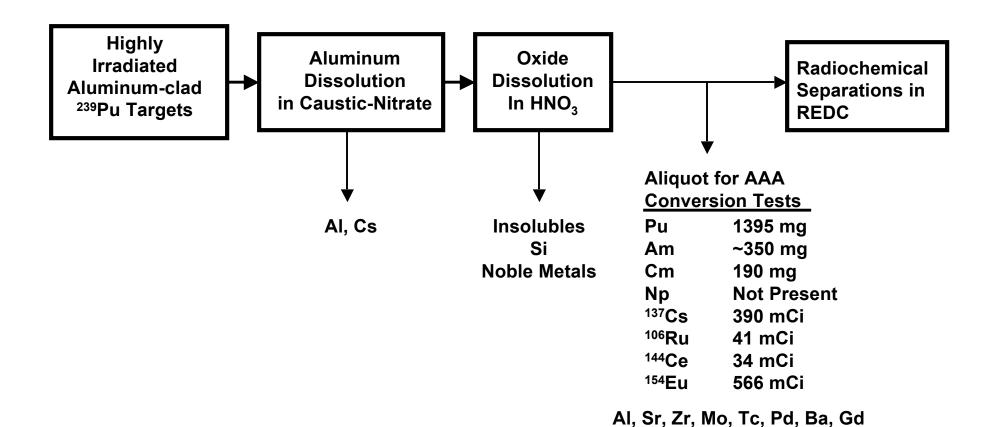
Modified Direct Denitration for UREX Raffinate (Pu-MAs-FPs)

- A conceptual design of a scaled-down (~50–100 g/h) rotary kiln unit was completed
- Design parameters were established to keep the equipment sizes appropriate for glove box operation

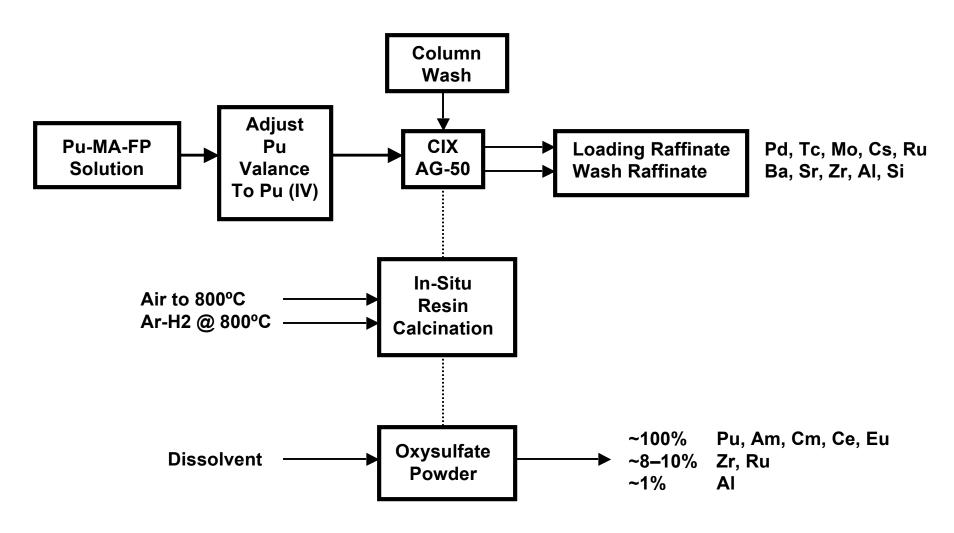

Modified Direct Denitration

- A commercial vendor reviewed the design parameters and preliminary equipment design and provided a reasonable cost estimate for fabrication
- A purchase order was issued for the unit with delivery expected in early July
- Cold testing of the unit will be done with rare earth surrogates in FY 2002
- Kiln unit will be installed in a glove box for testing and demonstration with Pu, Np, MAs, FPs, and SX residues in FY 2003

ORNL Experience with Resin Loading/Calcination Process


ORNL DWG 2001-9

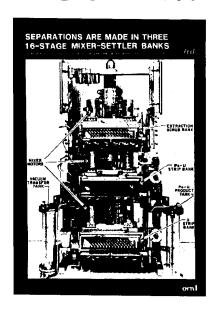
TRANSPLUTONIUM ELEMENTS

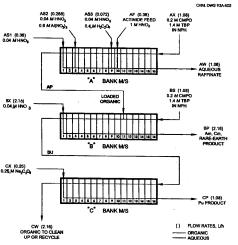


- Used for 25+ years to produce Am-Cm oxide for use in HFIR targets. Current process converts 22 g batches
- Resin loading/calcination process to be scaled-up for other applications. Tests have been run for producing ²³⁷Np oxide for ²³⁸Pu production.

High Activity Pu-MA-FP Solution for AAA Conversion Tests

Test Run in FY 2002 on Simulant UREX Raffinate


Evaluation of SANEX Extractants Developed in Europe


- The SANEX(IV) reagent, bis(chlorophenyl) dithiophosphinic acid developed at ITU has been successfully synthesized at ORNL
- Our initial tests will be with this reagent and the phenyl dithiophosphinic acid reagent which we have obtained commercially
- A draft experimental plan has been prepared and a process solution containing Am/Cm and associated fission products has been selected as the feed material for the extraction testing
- Tests will be done in FY 2002

Future SANEX Evaluations

- ORNL is investigating the synthesis of the SANEX(III) reagent, 2,6-bis(5,6-n-propyl-1,2,4-triazin-3-yl)-pyridine (BTP) developed at CEA
- If this reagent is successfully synthesized, testing will be incorporated into the current work
- Reviews of other alternative reagents and flowsheet options will continue in parallel with the batch extraction testing

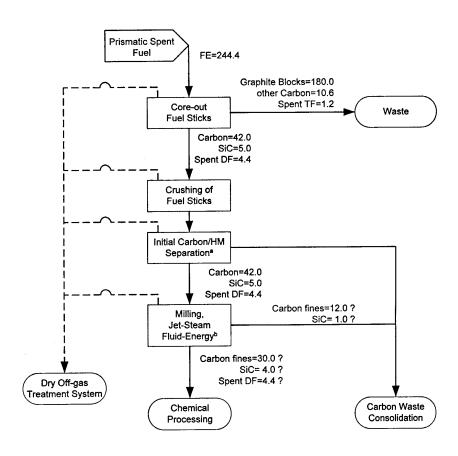
Proposed Hot Demo of Multi Tier Solvent Extraction in FY 2003

- The Solvent Extraction Test Facility (SETF), located in REDC Building 7920, Cell 5, was designed for hot testing of solvent extraction flowsheets
- The SETF contains a spent fuel dissolver, feed adjustment and feed metering tanks, and three 16-stage mixer settler contactors
- Capability for stage sampling to enable modeling verification
- The SETF has been used to evaluate flowsheets for LWR Spent Fuel, FFTF Spent Fuel, and to evaluate the TRUEX flowsheet at high activity levels

TRISO-Coated Fuel Processing Material Balance on Fuel Materials

Component/kg	Fuel Elements	Compacts	Particles
Graphite	90	-	-
Filler carbon	20.5	20.5	-
Pyro carbon	4.0	4.0	4.0
Porous carbon	1.8	1.8	1.8
SiC	3.1	3.1	3.1
Fuel + FPs	0.9 + 1.9	0.9 + 1.9	0.9 + 1.9
TOTAL	122.2	32.2	11.7

Dealing with the Carbon in the Most Efficient Way is Key


- It is necessary to process ~120 kg of carbon to recover the fissile content (<1 kg) in each fuel element
- A mechanical head-end is needed to separate the bulk of the carbon from the spent fuel
- Combining the carbon component with other elements should be avoided
 - Combination significantly increases the mass of waste to be dispositioned (CO₂, CF₄, CCI₄, etc.)
 - Gaseous forms of carbon are very expensive to capture and sequester by conventional means

Tentative Pilot-Scale Design for TRISO Fuel Processing

- Basis: Processing rate should be equivalent to spent fuel discharge rate from one HTGR
 - A 600-MW HTGR core contains 340 Fuel Elements
 - 1/3 of core is replaced each year
 - Ratio of DF/TF is TBD (but assumed to be 4:1)
- Pilot-scale facility should process ~2 Fuel Elements/day
 - Assume 200-d/year availability
 - Open 404 fuel channels (top/bottom) to remove compacts
 - Crush/mill ~4800 DFcompacts
 - Separate ~47 kg of (C + SiC) from ~4.5 kg oxide (TRU + FP); TRU accounts for ~1.4 kg

Mechanical Head-End

Pilot scale, Flow rate in kg/d

^a Solid/solid separation may be necessary; carrying step until it is proven it is not needed

^bThe steam-jet fluid-energy mill has some separation capability to be determined

Potential Collaboration with GrafTech

- GrafTech R&D Center possesses relevant industrial experience in
 - Carbon technology and nuclear-grade graphite
 - Crushing and milling
 - Acid leaching
 - Filtering of fine carbon slurries
 - Binding, compacting, and shaping
- There appears to be a strong basis for collaboration in the development of the head-end processes
- Can GrafTech's experience be adapted to hot cell environments?
- What level of participation does GrafTech desire?

Conclusions from GrafTech Visit

- Grinding and milling routine industrial scale (60 tons a day)
 - Rollers for coarse grinding
 - Steam-jet toroidal mill (to micron-range particles)
 - Easy to scale down
 - Very low maintenance (24 h/365 d continuous)
- Routine industrial scale acid leaching, washing and drying
 - Concentrated HNO₃ and H₂SO₄
 - Very low maintenance
- Multistage solid/liquid separation
 - Belt filters with "traveling" high vacuum suction
 - Annual replacement of belts
- Easy to scale down

Wastes Must Be Converted into an Acceptable Waste Form

- Carbon-fine wastes contain multiple impurities
 - SiC fragments
 - Noble metal fission products
 - Water and nitrates
- Repository waste form requirements
 - Stable waste form (low leach rate)
 - No volatiles (water, nitrates, organics, etc.)
 - No fine particles

(Potential Processing Option for Wastes)

- Final waste form: carbon block
- Processing options
 - Add binding agents
 - Compact
 - Sinter (remove water, organics, nitrates)
- Issues
 - Allowable loadings of impurities in graphite
 - Required temperatures
 - Avoidance of secondary wastes

Proposed Schedule for Work Beginning in FY 2003

Month	Work Element
1–9	Dissolution/leaching and carbon washing using mixtures prepared with cold surrogate powders; prepare sintered surrogates, solid/solid separation
7–18	Tests with coated surrogate particles
16–24	Demonstrate process line, at bench-scale, using actual compacts
24	Complete development to reach conceptual design stage
25	Initiate pre-pilot plant design of hot-cell scale demonstration process

FY 2003 Planning WBS 1.24 Separations

Task	Budget	Cumulative
	(\$ K)	(\$ K)
Front End (Radioiodine, SX Demo)	1000	1000
Back End (Nitrate-to-Oxide, SANEX Evaluation)	1250	2250
TRISO Head-End (Disassembly/Dissolution)	1250	3500
FLEX Evaluation	500	4000
Waste Form Development (U, Carbon)	500	4500